Abstract

In prostate brachytherapy, transrectal ultrasound (TRUS) is used to visualize the anatomy, while implanted seeds can be seen in C-arm fluoroscopy. Intra-operative dosimetry optimization requires reconstruction of the implanted seeds from multiple C-arm fluoroscopy images, which in turn requires estimation of the C-arm poses. We estimate the pose of the C-arm by two-stage registration between the 2D fluoroscopy images to a 3D TRUS volume. As single-view 2D/3D registration tends to yield depth error, we first estimate the depth from multiple 2D fluoro images and input this to a single-view 2D/3D registration. A commercial phantom was implanted with seeds and imaged with TRUS and CT. Ground-truth registration was established between the two by radiographic fiducials. Synthetic ground-truth fluoro images were created from the CT volume and registered to the 3D TRUS. The average rotation and translation errors were 1.0 degrees (STD = 2.3 degrees) and 0.7 mm (STD = 1.9 mm), respectively. In data from a human patient, the average rotation and lateral translation errors were 0.6 degrees (STD = 3.0 degrees) and 1.5 mm (STD = 2.8 mm), respectively, relative to the ground-truth established by a radiographic fiducial. Fully automated image-based C-arm pose estimation was demonstrated in prostate brachytherapy. Accuracy and robustness was excellent on phantom. Early result in human patient data appears clinically adequate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.