Abstract

In this paper, we present a new Carleman estimate for the adjoint equations associated to a class of super strong degenerate parabolic linear problems. Our approach considers a standard geometric imposition on the control domain, which can not be removed in general. Additionally, we also apply the aforementioned main inequality in order to investigate the null controllability of two nonlinear parabolic systems. The first application is concerned a global null controllability result obtained for some semilinear equations, relying on a fixed point argument. In the second one, a local null controllability for some equations with nonlocal terms is also achieved, by using an inverse function theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.