Abstract

Abstract. This paper considers a fully general (Riemann) wave equation on a finite-dimensional Riemannian manifold, with energy level (H 1 × L 2 ) -terms, under essentially minimal smoothness assumptions on the variable (in time and space) coefficients. The paper provides Carleman-type inequalities: first pointwise, for C 2 -solutions, then in integral form for H 1,1 (Q) -solutions. The aim of the present approach is to provide Carleman inequalities which do not contain lower-order terms, a distinguishing feature over most of the literature. Accordingly, global uniqueness results for overdetermined problems as well as Continuous Observability/ Uniform Stabilization inequalities follow in one shot, as a part of the same stream of arguments. Constants in the estimates are, therefore, generally explicit. The paper emphasizes the more challenging pure Neumann B.C. case. The paper is a generalization from the Euclidean to the Riemannian setting of [LTZ] in the more difficult case of purely Neumann B.C., and of [KK1] in the case of Dirichlet B.C. The approach is Riemann geometric, but different from—indeed, more flexible than—the one in [LTY1].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.