Abstract

This work is a survey of results for ill-posed Cauchy problems for PDEs of the author with co-authors starting from 1991. A universal method of the regularization of these problems is presented here. Even though the idea of this method was previously discussed for specific problems, a universal approach of this paper was not discussed, at least in detail. This approach consists in constructing of such Tikhonov functionals which are generated by unbounded linear operators of those PDEs. The approach is quite general one, since it is applicable to all PDE operators for which Carleman estimates are valid. Three main types of operators of the second order are among them: elliptic, parabolic and hyperbolic ones. The key idea is that convergence rates of minimizers are established using Carleman estimates. Generalizations to nonlinear inverse problems, such as problems of reconstructions of obstacles and coefficient inverse problems are also feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.