Abstract
AbstractLet L1, L2 ⊂ Cn be two totally real subspaces of real dimension n, and such that L1 ∩ L2 = {0}. We show that continuous functions on L1 ∪L2 allow Carleman approximation by entire functions if and only if L1 ∪L2 is polynomially convex. If the latter condition is satisfied, then a function f:L1 ∪L2 —> C such that f|LiCk(Li), i = 1,2, allows Carleman approximation of order k by entire functions if and only if f satisfies the Cauchy-Riemann equations up to order k at the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.