Abstract

In the past two decades, micromotors have experienced rapid development, especially in environmental remediation, the biomedical field, and in cargo delivery. In this study micromotors have been synthesized from a variety of materials. Different functional layers and catalytic layers are formed through template electrodeposition (the bottom‐up method). At the same time, the article analyzes the influence of hydrogen peroxide concentration, surfactant type and concentration on the speed of the micromotors. Cargo transportation through tubular micromotors has always been a problem that people are eager to solve. In this article, we electrodeposit a layer of Ni in the microtubes, which effectively guides the microtubular motors to complete the cargo transportation. The potential applications of micromotors are also being explored. We added the prepared micromotors to the methylene blue solution to effectively enhance the degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.