Abstract

Ferritins are spherical iron storage proteins within cells, composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin. Ferritins auto-assemble naturally into hollow nanocages with an outer diameter of 12 nm and an interior cavity 8 nm in diameter. Since the intrinsic tumor-targeting property of human HFn was first reported in 2012, HFn has been extensively explored for tumor-targeted delivery of anticancer drugs and diagnostic molecules, including radioisotopes and fluorophores, as well as inorganic nanoparticles (NPs) and chemotherapeutic drugs. This protocol provides four detailed procedures describing how to load four types of cargoes within HFn nanocages that are capable of accurately controlling cargo loading: synthesis of inorganic metal nanoparticles within the cavity of a wild-type human HFn nanocage (Procedure 1, requires ~5 h); loading of doxorubicin into the cavity of a wild-type human HFn nanocage (Procedure 2, requires ~3 d); loading Gd3+ into the cavity of a genetically engineered human HFn nanocage (Procedure 3, requires ~20 h); and loading 64Cu2+ radioisotope into the cavity of a genetically engineered human HFn nanocage (Procedure 4, requires ~3 h). Subsequent use of these HFn-based formulations is advantageous as they have intrinsic tumor-targeting capability and lack immunogenicity. Human HFn generated as described in this protocol can therefore be used to deliver therapeutic drugs and diagnostic signals as multifunctional nanomedicines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.