Abstract

Metabolic engineers seek to produce high-value products from inexpensive starting materials in a sustainable and cost-effective manner by using microbes as cellular factories. However, pathway development and optimization can be arduous tasks, complicated by pathway bottlenecks and toxicity. Pathway organization has emerged as a potential solution to these issues, and the use of protein- or DNA-based scaffolds has successfully increased the production of several industrially relevant compounds. These efforts demonstrate the usefulness of pathway colocalization and spatial organization for metabolic engineering applications. In particular, scaffolding within an enclosed, subcellular compartment shows great promise for pathway optimization, offering benefits such as increased local enzyme and substrate concentrations, sequestration of toxic or volatile intermediates, and alleviation of cofactor and resource competition with the host. Here, we describe the 1,2-propanediol utilization (Pdu) bacterial microcompartment (MCP) as an enclosed scaffold for pathway sequestration and organization. We first describe methods for controlling Pdu MCP formation, expressing and encapsulating heterologous cargo, and tuning cargo loading levels. We further describe assays for analyzing Pdu MCPs and assessing encapsulation levels. These methods will enable the repurposing of MCPs as tunable nanobioreactors for heterologous pathway encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.