Abstract

A recommender system is useful for a digital library to suggest the books that are likely preferred by a user. Most recommender systems using collaborative filtering approaches leverage the explicit user ratings to make personalized recommendations. However, many users are reluctant to provide explicit ratings, so ratings-oriented recommender systems do not work well. In this paper, we present a recommender system for CADAL digital library, namely CARES, which makes recommendations using a ranking-oriented collaborative filtering approach based on users' access logs, avoiding the problem of the lack of user ratings. Our approach employs mean AP correlation coefficients for computing similarities among users' implicit preference models and a random walk based algorithm for generating a book ranking personalized for the individual. Experimental results on real access logs from the CADAL web site show the effectiveness of our system and the impact of different values of parameters on the recommendation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.