Abstract

Although effective in reducing blood pressure, therapy with a first-generation [beta]-blocker is currently controversial in metabolic syndrome due to its negative impact on carbohydrate and lipid metabolism. We evaluated the effects of nebivolol, a third-generation highly selective [beta]-blocker with additional vasodilating activity, versus the traditional [beta]-blocker atenolol in controlling functional and morphological cardiovascular damage in a rat model of metabolic syndrome. During 6 months, Zucker diabetic fatty (ZDF) rats and control lean Zucker rats (LZR) were studied. The experimental groups were: untreated ZDF, ZDF along with nebivolol, ZDF along with atenolol and LZR. Blood pressure, plasma insulin, triglycerides, cholesterol, glucose and platelet aggregation were evaluated. Malondialdehyde, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, CuZn superoxide dismutase, catalase and glutathione peroxidase were determined in heart homogenates and transforming growth factor [beta]1 and plasminogen activator inhibitor-1 (PAI-1) expression, by immunohistochemistry (IHC). Vascular reactivity, vascular cell adhesion molecule-1, platelet endothelial cell adhesion molecule-1, PAI-1, enhanced nitric oxide synthase and collagen expression were evaluated in aorta. Nebivolol and atenolol presented a similar reduction in blood pressure. However, nebivolol showed a better lipid profile, preserved left ventricular function, a significant control in left ventricular geometry and moderated left ventricular hypertrophy versus atenolol. Significant reduction in platelet aggregation and a substantial endothelium-dependent and endothelium-independent relaxation in vessels were also shown in the nebivolol group versus atenolol group. Antioxidant defenses were preserved by nebivolol with a reduction in oxidative stress parameters. Vascular cell adhesion molecule-1, platelet endothelial cell adhesion molecule-1, PAI-1 and eNOS were favorably modulated with nebivolol in vessel wall. TGF[beta]1, PAI-1 and accumulation of collagen-III and collagen-I were also diminished in heart with nebivolol. The present study provides substantial information supporting an actual protective role of nebivolol in comparison with atenolol in experimental metabolic syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call