Abstract

PurposeWe developed a virtual tagging technique that reconstructs tagging images using the displacement field obtained by applying B-spline free-form deformation (FFD) between diastolic images and images of other cardiac phases in cardiac cine MRI. The purpose of this study was to validate its characteristics and usefulness in phantom and patient studies. MethodsDigital phantoms simulating uniform and non-uniform wall motion models were created, and virtual tagging images were reconstructed with various matrix sizes and tag resolutions to evaluate the accuracy of FFD and the characteristics of the tags. In the patient study, FFD's accuracy was assessed at three levels (base, middle, and apex) in healthy patients. In patients with heart failure, virtual tagging images were compared with strain maps obtained by feature tracking and virtual tagging. ResultsIn the phantom study, blurring of tags was observed when tags were reconstructed with high resolution using a small matrix size. In the patient study, the accuracy of FFD was lower in the base than in the apex. Patients with heart failure had decreased distortion of the displacement field vector and virtual tags, indicating decreased local wall motion, consistent with areas of abnormalities found in strain maps. ConclusionThe virtual tagging technique does not require additional imaging and can visualize regional LV motion abnormalities via deformation of the tag as well as conventional cardiovascular magnetic resonance tagging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call