Abstract

To determine the association between coronary vessel wall morphology and haemodynamic consequences to the myocardium using a combined cardiovascular magnetic resonance (CMR) imaging protocol. Non-invasive CMR profiling of coronary atherosclerotic wall changes and related myocardial blood flow impairment has not been established yet. Sixty-three patients (45 men, 61.5 ± 10.7 years) with suspected or known coronary artery disease underwent 3.0 Tesla CMR imaging. The combined CMR protocol consisted of the following imaging modules at rest: 3D vessel wall imaging and flow measurement of the proximal right coronary artery (RCA), myocardial T2*, and first-pass perfusion imaging. During adenosine stress coronary flow, T2* and first-pass perfusion imaging were repeated. Coronary X-ray angiography classified patient groups: (i) all-smooth (n = 19); (ii) luminal irregular (diameter reduction < 30%; n = 35); and (iii) stenosed RCA (diameter reduction ≥ 50%; n = 9). The ratio of CMR-derived vessel wall area-to-lumen area significantly increased stepwise for the comparison of all-smooth vs. luminal irregular vs. stenosed RCA (1.9 ± 0.6 vs. 2.6 ± 0.6 vs. 3.6 ± 0.9, P < 0.01). Epicardial coronary flow reserve exhibited a stepwise significant decrease (3.4 ± 0.5 vs. 2.9 ± 0.7 vs. 1.7 ± 0.3, P < 0.01). On the myocardial level, stress-induced percentage gain of T2* values (ΔT2*) was significantly decreased between groups (29.2 ± 10.6 vs. 9.0 ± 9.8 vs. 2.2 ± 11.8%, P < 0.01) while perfusion reserve index decreased in the presence of stenosed RCA only (2.2 ± 0.6 vs. 2.0 ± 0.4 vs. 1.3 ± 0.3, P = ns and P < 0.01, respectively). The proposed comprehensive CMR imaging protocol provided a non-invasive approach for direct assessment of coronary vessel wall remodelling and resultant pathophysiological consequences on the level of epicardial coronary and myocardial blood flow in patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call