Abstract

BackgroundComparing cardiovascular magnetic resonance (CMR) angiography with computed tomography angiography (CTA), a major deficiency has been its inability to reliably image peripheral vascular calcifications that may impact the choice of interventional strategy and influence patient prognosis. Recently, MRI using a proton density-weighted, in-phase stack of stars (PDIP-SOS) technique has proved capable of detecting these calcifications. The goal of the present study was two-fold: (1) to determine whether magnetic field strength impacts the apparent size and conspicuity of ilio-femoral arterial calcifications; and (2) to determine whether the technique can be accurately applied to image aorto-iliac arterial calcifications.Main bodyTwo patient cohorts were studied. For the first cohort, ilio-femoral arterial calcifications were imaged at 1.5 Tesla in 20 patients and at 3 Tesla in 12 patients. For the second cohort, aorto-iliac arterial calcifications were imaged in 10 patients at 3 Tesla and one patient at 1.5 Tesla. Qualitative image analysis as well as quantitative analysis using a semi-automated technique were performed using CTA as the reference standard.Qualitatively, most PDIP-SOS CMR images showed good-to-excellent confidence to detect vascular calcifications, with good-to-excellent inter-reader agreement (κ = 0.67 for ilio-femoral region, P < 0.001; κ = 0.80 for aorto-iliac region, P < 0.01). There was an overall excellent correlation (r = 0.98, P < 0.001) and agreement (intraclass correlation coefficient = 0.97, P < 0.001) between PDIP-SOS CMR and CTA measures of calcification volume in both regions, with no overt difference in performance at 1.5 Tesla vs. 3 Tesla for ilio-femoral calcifications. CMR lesion volumes were slightly lower than those measured for CTA.ConclusionUsing PDIP-SOS CMR, aorto-iliac and ilio-femoral calcifications could be simultaneously evaluated at 3 Tesla in less than six minutes with excellent correlation and agreement to CTA. Our results suggest that PDIP-SOS CMR provides a reliable alternative to CT for pre-interventional evaluation of peripheral vascular calcium burden.

Highlights

  • Comparing cardiovascular magnetic resonance (CMR) angiography with computed tomography angiography (CTA), a major deficiency has been its inability to reliably image peripheral vascular calcifications that may impact the choice of interventional strategy and influence patient prognosis

  • Unlike a Cartesian 3D acquisition, in which chemical shift artifacts at fat/water interfaces appear as discrete dark lines that can obscure or be confounded with vascular calcifications in minimum intensity projections, these interfaces are less distinct with the in-phase stack-of-stars radial k-space trajectory so that they are invisible in the projection images

  • There was an overall excellent correlation (r = 0.98, 95% CI: 0.97–0.99, P < 0.001) and agreement (ICC = 0.97, 95% CI: 0.96– 0.98, P < 0.001) between PDIP-SOS CMR and CTA measures of calcification volume (Fig. 2a)

Read more

Summary

Introduction

Comparing cardiovascular magnetic resonance (CMR) angiography with computed tomography angiography (CTA), a major deficiency has been its inability to reliably image peripheral vascular calcifications that may impact the choice of interventional strategy and influence patient prognosis. Most PDIP-SOS CMR images showed good-to-excellent confidence to detect vascular calcifications, with good-to-excellent inter-reader agreement (κ = 0.67 for ilio-femoral region, P < 0.001; κ = 0.80 for aorto-iliac region, P < 0.01). CMR lesion volumes were slightly lower than those measured for CTA Both computed tomography angiography (CTA) and cardiovascular magnetic resonance (CMR) angiography are accurate tests for the cross-sectional assessment of peripheral arterial disease (PAD) [1, 2]. Dense arterial wall calcifications should be avoided when choosing a percutaneous access site, and their presence is a major determinant of failure for percutaneous endovascular aneurysm repair [10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.