Abstract
BackgroundCardiovascular magnetic resonance feature tracking (CMR-FT) is a novel tissue tracking technique developed for noninvasive assessment of myocardial motion and deformation. This preliminary study aimed to evaluate the observer’s reproducibility of CMR-FT in a small animal (mouse) model and define sample size calculation for future trials.MethodsSix C57BL/6 J mice were selected from the ongoing experimental mouse model onsite and underwent CMR with a 3 Tesla small animal MRI scanner. Myocardial deformation was analyzed using dedicated software (TomTec, Germany) by two observers. Left ventricular (LV) longitudinal, circumferential and radial strain (EllLAX, EccSAX and ErrSAX) were calculated. To assess intra-observer agreement data analysis was repeated after 4 weeks. The sample size required to detect a relative change in strain was calculated.ResultsIn general, EccSAX and EllLAX demonstrated highest inter-observer reproducibility (ICC 0.79 (0.46–0.91) and 0.73 (0.56–0.83) EccSAX and EllLAX respectively). In contrast, at the intra-observer level EllLAX was more reproducible than EccSAX (ICC 0.83 (0.73–0.90) and 0.74 (0.49–0.87) EllLAX and EccSAX respectively). The reproducibility of ErrSAX was weak at both observer levels. Preliminary sample size calculation showed that a small study sample (e.g. ten animals to detect a relative 10% change in EccSAX) could be sufficient to detect changes if parameter variability is low.ConclusionsThis pilot study demonstrates good to excellent inter- and intra-observer reproducibility of CMR-FT technique in small animal model. The most reproducible measures are global circumferential and global longitudinal strain, whereas reproducibility of radial strain is weak. Furthermore, sample size calculation demonstrates that a small number of animals could be sufficient for future trials.
Highlights
Cardiovascular magnetic resonance feature tracking (CMR-Feature tracking (FT)) is a novel tissue tracking technique developed for noninvasive assessment of myocardial motion and deformation
There was excellent inter-observer reproducibility for Left ventricular short-axis circumferential strain (EccSAX): intraclass correlation coefficient (ICC) 0.79 (0.46–0.91) and Left ventricular long-axis longitudinal strain (EllLAX): ICC 0.73 (0.56–0.83)
The level of intra-observer reproducibility was better for EllLAX: ICC 0.83 (0.73–0.90) and lower for EccSAX: ICC 0.74 (0.49–0.87)
Summary
Cardiovascular magnetic resonance feature tracking (CMR-FT) is a novel tissue tracking technique developed for noninvasive assessment of myocardial motion and deformation. This preliminary study aimed to evaluate the observer’s reproducibility of CMR-FT in a small animal (mouse) model and define sample size calculation for future trials. Clinical decision making mostly relies on a quantitative assessment of cardiac structure and function with left ventricular (LV) mass, volumes and ejection fraction (EF) being as critical parameters in many more situations than just selection of appropriate treatment strategy or prediction of cardiac outcomes [1] All these parameters as global quantitative measures have some important limitations [2]. Due to the lack of intramyocardial landmarks and excellent contrast between blood pool and myocardial tissue, CMR feature tracking (CMR-FT) technique focuses on endocardial and epicardial contouring [5]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.