Abstract

This study investigated whether the progressive rise in heart rate (HR) and fall in stroke volume (SV) during prolonged, constant-rate, moderate-intensity exercise (cardiovascular drift, CVdrift) in a hot environment is associated with a reduction in VO(2max). CVdrift was measured in nine male cyclists between 15 and 45 min of cycling at 60% VO(2max) in 35 degrees C that was immediately followed by measurement of VO(2max). VO(2max) also was measured after 15 min of cycling on a separate day, so that any change in VO(2max) between 15 and 45 min could be associated with the CVdrift that occurred during that time interval. This protocol was performed under one condition in which fluid was ingested and there was no significant body weight change (0.3 +/- 0.4%), and under another in which no fluid was ingested and dehydration occurred (2.5 +/- 1%, P < 0.05). Fluid ingestion did not affect CVdrift or change in VO(2max). A 12% increase in HR (151 +/- 9 vs 169 +/- 10 bpm, P < 0.05) and 16% decrease in SV (120 +/- 12 vs 101 +/- 10 mL.beat(-1), P < 0.05) between 15 and 45 min was accompanied by a 19% decrease in VO(2max) (4.4 +/- 0.6 vs 3.6 +/- 0.4 L.min(-1), P < 0.05) despite attainment of a higher maximal HR (P < 0.05) at 45 min (194 +/- 5 bpm) vs 15 min (191 +/- 5 bpm). Submaximal VO(2) increased only slightly over time, but VO(2max) increased from 63 +/- 5% at 15 min to 78 +/- 8% at 45 min (P < 0.05). We conclude CVdrift during 45 min of exercise in the heat is associated with decreased VO(2max) and increased relative metabolic intensity. The results support the validity of using changes in HR to reflect changes in relative metabolic intensity during prolonged exercise in a hot environment in which CVdrift occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.