Abstract

Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.