Abstract

Studies examined the role of angiotensin (ANG) AT1a receptors in cardiovascular autonomic control by measuring arterial pressure (AP) and heart rate (HR) variability and the effect of autonomic blockade in mice lacking AT1a receptors (AT1a -/-). Using radiotelemetry in conscious AT1a +/+ and AT1a -/- mice, we determined 1) AP and pulse interval (PI) variability in time and frequency (spectral analysis) domains, 2) AP response to alpha(1)-adrenergic and ganglionic blockade, and 3) intrinsic HR after ganglionic blockade. Pulsatile AP was recorded (5 kHz) for measurement of AP and PI and respective variability. Steady-state AP responses to prazosin (1 microg/g ip) and hexamethonium (30 microg/g ip) were also measured. AP was lower in AT1a -/- vs. AT1a +/+, whereas HR was not changed. Prazosin and hexamethonium produced greater decreases in mean AP in AT1a -/- than in AT1a +/+. The blood pressure difference was marked after ganglionic blockade (change in mean AP of -44 +/- 10 vs. -18 +/- 2 mmHg, AT1a -/- vs. AT1a +/+ mice). Intrinsic HR was also lower in AT1a -/- mice (431 +/- 32 vs. 524 +/- 22 beats/min, AT1a -/- vs. AT1a +/+). Beat-by-beat series of systolic AP and PI were submitted to autoregressive spectral estimation with variability quantified in low-frequency (LF: 0.1-1 Hz) and high-frequency (HF: 1-5 Hz) ranges. AT1a -/- mice showed a reduction in systolic AP LF variability (4.3 +/- 0.8 vs. 9.8 +/- 1.3 mmHg(2)), with no change in HF (2.7 +/- 0.3 vs. 3.3 +/- 0.6 mmHg(2)). There was a reduction in PI variability of AT1a -/- in both LF (18.7 +/- 3.7 vs. 32.1 +/- 4.2 ms(2)) and HF (17.7 +/- 1.9 vs. 40.3 +/- 7.3 ms(2)) ranges. The association of lower AP and PI variability in AT1a -/- mice with enhanced AP response to alpha(1)-adrenergic and ganglionic blockade suggests that removal of the ANG AT1a receptor produces autonomic imbalance. This is seen as enhanced sympathetic drive to compensate for the lack of ANG signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.