Abstract

The purpose of this study was to examine the association among electromyographic (EMG) activity, recovery blood flow, and the magnitude of the autonomic adjustments to rhythmic exercise in humans. To accomplish this, 10 healthy subjects (aged 23-37 y) performed rhythmic handgrip exercise for 2 min at 5, 15, 25, 40, and 60% of maximal voluntary force. Heart rate and arterial blood pressure were measured at rest (control), during each level of exercise, and for 2 min following exercise (recovery). The rectified, filtered EMG activity of the exercising forearm was measured continuously during each level of exercise and was used as an index of the level of central command. Post-exercise hyperemia was calculated as the difference between the control and the average recovery (2 min) forearm blood flows (venous occlusion plethysmography) and was examined as a possible index of the stimulus for muscle chemoreflex activation. Heart rate, arterial pressure, forearm EMG activity, and post-exercise hyperemia all increased progressively with increasing exercise intensity. The magnitudes of the increases in heart rate and arterial pressure from control to exercise were directly related to both the level of EMG activity and the degree of post-exercise hyperemia across the five exercise intensities (delta heart rate vs EMG activity: r = 0.99; delta arterial pressure vs EMG activity: r = 0.99; delta heart rate vs hyperemia: r = 0.99; and delta arterial pressure vs hyperemia: r = 0.98; all p less than 0.01). Furthermore, the level of EMG activity was directly related (r = 0.99) to the corresponding degree of hyperemia.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call