Abstract

The cardiac changes resulting from mechanical overload of the left ventricle have been well documented and a variety of compensatory mechanisms described. These include a decrease in maximum velocity (V0) of shortening in the absence of reduction in active tension (P0), and a reversible decrease in myofibrillar adenosine triphosphatase activity resulting from isoenzymic shift from, predominantly, a form of myosin with high ATPase activity (V1) to another with low (V3). The thermodynamic advantage of the transition is the hypertrophied muscle possesses a more energy-efficient form of contraction. These reversible transitions resulted from altered gene expression of isoenzymic forms of myosin heavy chain. It must be borne in mind that the adaptational modifications just described appear to occur only in smaller animals such as the rat, that possesses several myosin isozymes. In large mammals it is mainly the V3 form of myosin that is present, which does not change with altered contractile state. Responses of the large arteries to hypertension have been poorly studied. This is surprising when one recalls that degenerative disease of such vessels, that include the aorta, carotids and ileo-femoral arteries is almost an obligatory concomitant of hypertension. Such studies as have been carried out indicate that hyperplasia is specific for abdominal aortic stenosis while hypertrophy is found in aortic smooth muscle in rats with systemic hypertension. Mechanically, an increase in V0 with no change in P0 have been reported; an increase in myofibrillar ATPase activity was also reported. Though two myosin heavy chain isozymes have been found in aortic smooth muscle densitometry did not reveal any difference in distribution between tissues from control and hypertensive rats.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call