Abstract

Repetitive tasks can lead to long-term cardiovascular problems due to continuous strain and inadequate recovery. The automobile operators on the assembly line are exposed to these risks when workload volume changes according to the workstation type. However, the current ergonomic assessments focus primarily on observational and, in some cases, biomechanical methods that are subjective and time-consuming, overlooking cardiorespiratory adaptations. This study aimed to analyze the cardiorespiratory response to distinct workload volumes and ergonomic risk (ER) scores for an automotive assembly line. Sixteen male operators (age = 38 ± 8 years; BMI = 25 ± 3 kg·m2) volunteered from three workstations (H1, H2, and H3) with specific work cycle duration (1, 3, and 5 min respectively). Electrocardiogram (ECG), respiratory inductance plethysmography (RIP), and accelerometer (ACC) data were collected during their shift. The results showed significant differences from the first to the last 10 min, where H3 had its SDRRi reduced (p = 0.014), H1’s phase synchrony and H2’s coordination between thoracic and abdominal movements decreased (p < 0.001, p = 0.039). In terms of ergonomic risk, the moderate-high rank showed a reduction in SDRRi (p = 0.037) and moderate-risk activities had diminished phase synchrony (p = 0.018) and correlation (p = 0.004). Thus, the explored parameters could have the potential to develop personalized workplace adaptation and risk assessment systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.