Abstract

BackgroundEmissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments.MethodsSize-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound.ResultsOn an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB.ConclusionsThe findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations.

Highlights

  • Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population

  • Despite the potential public health threat from increased wildland fire emissions [9,10,11,12], it is not known if there are common bioactive components that are more harmful than constituents from regional and point source pollutants, and only a limited number of studies have directly evaluated the toxicity of wildfire smoke which varies according to fuel type, combustion conditions, and meteorology [13,14,15]

  • The results showed that on an equi-mass basis, the coarse particulate matter (PM) collected during the active smolder phase of the wildfire event induced the strongest pro-inflammatory responses in the lung in association with endotoxin content and reactive oxygen species (ROS) production, while the ultrafine PM collected from the same period caused significant cardiac effects

Read more

Summary

Introduction

Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. It is well recognized that short- and long-term exposures to airborne pollutants are associated with increased morbidity and mortality in the exposed population [1,2]. These same patterns have been noted during acute wildland fire episodes, and it is expected that as the scale and frequency of wildfires increase because of climate change, hospital admissions for respiratory infections, asthma, cardiovascular diseases, and heart failure will rise in urban areas impacted by such events [3,4,5]. Lipopolysaccharide (LPS, endotoxin) which exacerbates both respiratory and cardiovascular disease, is present in biomass emissions from sources including domestic woodsmoke, agricultural burning, and environmental cigarette smoke [16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call