Abstract

1. Responses of spinoreticular (SRT) and spinothalamic (STT) neurons located in the T7-T9 segments to cardiopulmonary sympathetic afferent (CPS) stimuli were studied in 27 cats that were anesthetized with alpha-chloralose. 2. CPS stimulation excited 32 SRT and 10 STT neurons. Each neuron was also excited by stimulation of the left greater splanchnic nerve (SPL) and had a somatic receptive field that was most commonly located on the upper abdomen and over the lower rib cage. An additional 12 SRT and 3 STT neurons received input from SPL and somatic structures but failed to respond to CPS stimulation. 3. CPS stimulation evoked early responses (23 cells) or both early and late responses (19 cells) that had average latencies of 12.7 +/- 1.8 and 88.2 +/- 13.1 (SE) ms, respectively. Latencies of responses to SPL stimulation were significantly shorter and averaged 8.1 +/- 0.9 and 46.1 +/- 7.1 ms. Magnitudes of early responses to SPL stimulation were significantly greater than responses to CPS stimulation; however, late responses were not different. 4. Responses to CPS stimulation were inhibited by a prior conditioning stimulus applied to SPL. Greatest inhibition occurred at a conditioning-test interval of 40 ms, and inhibition lasted for at least 300 ms. Inhibition of responses to SPL stimulation could be evoked by conditioning stimuli applied to CPS; however, the inhibition was significantly less than that evoked by SPL stimulation on responses to CPS stimulation. 5. Thirty-eight neurons were tested for responses to injection of bradykinin (4 micrograms/kg) into the left atrium. Discharge rate of 17 cells increased from 5 +/- 2 to 12 +/- 4 Hz. Four cells were tachyphylactic to repeated injections. Injections of bradykinin into the thoracic aorta did not significantly alter cell activity. Bilateral cervical vagotomy had no effect on responses to intracardiac bradykinin. 6. The results indicate that lower thoracic SRT and STT neurons are excited by CPS stimuli including noxious stimulation of the heart. However, comparison of these responses with previously reported responses of upper thoracic SRT and STT neurons indicate that there is a decrease in effectiveness of CPS stimuli from upper to lower thoracic segments. Convergence of CPS and abdominal inputs onto lower thoracic pain pathways could explain abdominal pain that is occasionally associated with cardiac disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call