Abstract

ObjectivesThis study sought to discover the key determinants of exercise capacity, maximal oxygen consumption (oxygen uptake [Vo2]), and ventilatory efficiency (ventilation/carbon dioxide output [VE/Vco2] slope) and assess the prognostic potential of metabolic exercise testing in hypertrophic cardiomyopathy (HCM). BackgroundThe intrinsic mechanisms leading to reduced functional tolerance in HCM are unclear. MethodsThe study sample included 156 HCM patients consecutively enrolled from January 1, 2007 to January 1, 2012 with a complete clinical assessment, including rest and stress echocardiography and cardiopulmonary exercise test (CPET) with impedance cardiography. Patients were also followed for the composite outcome of cardiac-related death, heart transplant, and functional deterioration leading to septal reduction therapy (myectomy or septal alcohol ablation). ResultsAbnormalities in CPET responses were frequent, with 39% (n = 61) of the sample showing a reduced exercise tolerance (Vo2 max <80% of predicted) and 19% (n = 30) characterized by impaired ventilatory efficiency (VE/Vco2 slope >34). The variables most strongly associated with exercise capacity (expressed in metabolic equivalents), were peak cardiac index (r = 0.51, p < 0.001), age (r = –0.25, p < 0.01), male sex (r = 0.24, p = 0.02), and indexed right ventricular end-diastolic area (r = 0.31, p = 0.002), resulting in an R2 of 0.51, p < 0.001. Peak cardiac index was the main predictor of peak Vo2 (r = 0.61, p < 0.001). The variables most strongly related to VE/VCO2 slope were E/E′ (r = 0.23, p = 0.021) and indexed left atrial volume index (LAVI) (r = 0.34, p = 0.005) (model R2 = 0.15). The composite endpoint occurred in 21 (13%) patients. In an exploratory analysis, 3 variables were independently associated with the composite outcome (mean follow-up 27 ± 11 months): peak Vo2 <80% of predicted (hazard ratio: 4.11; 95% confidence interval [CI]: 1.46 to 11.59; p = 0.008), VE/Vco2 slope >34 (hazard ratio: 3.14; 95% CI: 1.26 to 7.87; p = 0.014), and LAVI >40 ml/m2 (hazard ratio: 3.32; 95% CI: 1.08 to 10.16; p = 0.036). ConclusionsIn HCM, peak cardiac index is the main determinant of exercise capacity, but it is not significantly related to ventilatory efficiency. Peak Vo2, ventilatory inefficiency, and LAVI are associated with an increased risk of major events in the short-term follow-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.