Abstract

To elucidate the effects of low-dose arginine vasopressin on cardiopulmonary functions and nitrosative stress using an established model of acute lung injury. Prospective, randomized, controlled laboratory experiment. Investigational intensive care unit. Eighteen chronically instrumented sheep. Sheep were randomly assigned to a sham group without injury or treatment, an injury group without treatment (40% total body surface area third-degree burn and 48 breaths of cold cotton smoke), or an injured group treated with arginine vasopressin (0.02 IU·min⁻¹) from 1 hr after injury until the end of the 24-hr study period (each n = 6). All sheep were mechanically ventilated and fluid resuscitated using an established protocol. There were no differences among groups at baseline. The injury was characterized by a severe deterioration of cardiopulmonary function (left ventricular stroke work indexes and Pao2/Fio2 ratio; p < .01 each vs. sham). Compared with controls, arginine vasopressin infusion improved myocardial function, as suggested by higher stroke volume indexes and left ventricular stroke work indexes (18-24 hrs and 6-24 hrs, respectively; p < .05 each). In addition to an improved gas exchange (higher Pao2/Fio2 ratios from 6 to 24 hrs, p < .01 each), pulmonary edema (bloodless wet-to-dry-weight ratio; p = .018), bronchial obstruction (p = .01), and pulmonary shunt fraction (12-24 hrs; p ≤ .001 each) were attenuated in arginine vasopressin-treated animals compared with controls. These changes occurred along with reduced nitrosative stress, as indicated by lower plasma levels of nitrate/nitrite (12-24 hrs, p < .01 each), as well as lower myocardial and pulmonary tissue concentrations of 3-nitrotyrosine (p = .041 and p = .042 vs. controls, respectively). At 24 hrs, pulmonary 3-nitrotyrosine concentrations were negatively correlated with Pao2/Fio2 ratio (r = -.882; p < .001) and myocardial 3-nitrotyrosine content with stroke volume indexes (r = -.701; p = .004). Low-dose arginine vasopressin reduced nitrosative stress and improved cardiopulmonary functions in sheep with acute lung injury secondary to combined burn and smoke inhalation injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call