Abstract

As prolonged cardiopulmonary bypass becomes more essential during cardiac interventions, an increasing clinical demand arises for procedure optimization and for minimizing organ damage resulting from prolonged extracorporal circulation. The goal of this paper was to demonstrate a fully functional and clinically relevant model of cardiopulmonary bypass in a mouse. We report on the device design, perfusion circuit optimization, and microsurgical techniques. This model is an acute model, which is not compatible with survival due to the need for multiple blood drawings. Because of the range of tools available for mice (e.g., markers, knockouts, etc.), this model will facilitate investigation into the molecular mechanisms of organ damage and the effect of cardiopulmonary bypass in relation to other comorbidities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.