Abstract
Exercise induces cardioprotection against myocardial infarction, despite obesity, by restoring pro-survival pathways and increasing resistance of mitochondrial permeability transition pore (mPTP) opening at reperfusion. Among the mechanisms involved in the inactivation of these pathways, oxysterols appear interesting. Thus, we investigated the influence of regular exercise on the reperfusion injury salvage kinase (RISK) pathway, oxysterols, and mitochondria, in the absence of ischemia-reperfusion. We also studied 7β-hydroxycholesterol (7βOH) concentration (mass spectrometry) in human lean and obese subjects. Wild-type (WT) and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise. Exercise significantly increased Akt phosphorylation, whereas 7βOH concentration was reduced. Moreover, exercise induced the translocation of PKCε from the cytosol to mitochondria. However, exercise did not affect the calcium concentration required to open mPTP in the mitochondria, neither in WT nor in ob/ob animals. Finally, human plasma 7βOH concentration was consistent with observations made in mice. In conclusion, regular exercise enhanced the RISK pathway by increasing kinase phosphorylation and PKCε translocation and decreasing 7βOH concentration. This activation needs the combination with stress conditions, i.e., ischemia-reperfusion, in order to inhibit mPTP opening at the onset of reperfusion. The human findings suggest 7βOH as a candidate marker for evaluating cardiovascular risk factors in obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.