Abstract
To assess the effects of Qishen Granule (, QSG) on sarcoplasmic reticulum (SR) Ca2+ handling in heart failure (HF) model of rats and to explore the underlying molecular mechanisms. HF rat models were induced by left anterior descending coronary artery ligation surgery and high-fat diet feeding. Rats were randomly divided into sham (n=10), model (n=10), QSG (n=12, 2.2 g/kg daily) and metoprolol groups (n=12, 10.5 mg/kg daily). The therapeutic effects of QSG were evaluated by echocardiography and blood lipid testing. Intracellular Ca2+ concentration and sarco-endoplasmic reticulum ATPase 2a (SERCA2a) activity were detected by specifific assay kits. Expressions of the critical regulators in SR Ca2+ handling were evaluated by Western blot and real-time quantitative polymerase chain reaction. HF model of rats developed ventricular remodeling accompanied with calcium overload and defective Ca2+ release-uptake cycling in cardiomyocytes. Treatment with QSG improved contractive function, attenuated ventricular remodeling and reduced the basal intracellular Ca2+ level. QSG prevented defective Ca2+ leak by attenuating hyperphosphorylation of ryanodine receptor 2, inhibiting expression of protein kinase A and up-regulating transcriptional expression of protein phosphatase 1. QSG also restored Ca2+ uptake by up-regulating expression and activity of SERCA2a and promoting phosphorylation of phospholamban. QSG restored SR Ca2+ cycling in HF rats and served as an ideal alternative drug for treating HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.