Abstract

BackgroundThis study explored the effects of cinnamoyl imidazole on alleviating oxidative stress and apoptosis in hypoxia/reoxygenation (H/R)-induced H9C2 cells, using computational analysis with in-vitro validation. MethodsComputational techniques, including SwissADME and Swiss Target Prediction, were employed to predict the ADME properties and to identify targets of cinnamoyl imidazole. Differential gene expression (DEG) analysis was conducted on myocardial infarction (MI) datasets obtained from the Gene Expression Omnibus. Gene enrichment and molecular simulation studies were done to focus on apoptotic pathways. The computational findings were validated through In vitro experiments on H9C2 cardiomyocytes subjected to 8 h of hypoxia followed by 24 h of reoxygenation. Antioxidant enzyme levels (catalase, GST, GSH-Px, and SOD), mitochondrial membrane potential (ΔΨm), caspase-3 activity, and the expression of CASP3, MAPK8, JAK2, and BCL2L1 were assessed. ResultsCinnamoyl imidazole has demonstrated favourable pharmacokinetic properties, characterized by high gastrointestinal absorption and low toxicity with negative toxicity for organ endpoints. Molecular docking studies revealed the strong binding affinities for CASP3, MAPK8, and JAK2. In vitro results showed a significant increase in cell viability (94.7 % at 10 μM, p < 0.001) and antioxidant enzyme activity, along with a 64.3 % reduction in caspase-3 activity at 1000 μM (p < 0.01). Cinnamoyl imidazole treatment preserved mitochondrial membrane potential, downregulated pro-apoptotic genes CASP3 and MAPK8, and upregulated the anti-apoptotic gene BCL2L1. ConclusionCinnamoyl imidazole effectively mitigates oxidative stress and apoptosis in H/R-induced H9C2 cells, enhancing cell viability and antioxidant defenses while maintaining mitochondrial integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.