Abstract

The aim of this study was to determine whether activation of β3-adrenergic receptor (AR) and downstream signaling of nitric oxide synthase (NOS) isoforms protects the heart from failure and hypertrophy induced by pressure overload.β3-AR and its downstream signaling pathways are recognized as novel modulators of heart function. Unlike β1- and β2-ARs, β3-ARs are stimulated at high catecholamine concentrations and induce negative inotropic effects, serving as a "brake" to protect the heart from catecholamine overstimulation.C57BL/6J and neuronal NOS (nNOS) knockout mice were assigned to receive transverse aortic constriction (TAC), BRL37344 (β3 agonist, BRL 0.1 mg/kg/h), or both.Three weeks of BRL treatment in wild-type mice attenuated left ventricular dilation and systolic dysfunction, and partially reduced cardiac hypertrophy induced by TAC. This effect was associated with increased nitric oxide production and superoxide suppression. TAC decreased endothelial NOS (eNOS) dimerization, indicating eNOS uncoupling, which was not reversed by BRL treatment. However, nNOS protein expression was up-regulated 2-fold by BRL, and the suppressive effect of BRL on superoxide generation was abrogated by acute nNOS inhibition. Furthermore, BRL cardioprotective effects were actually detrimental in nNOS(-/-) mice.These results are the first to show in vivo cardioprotective effects of β3-AR-specific agonism in pressure overload hypertrophy and heart failure, and support nNOS as the primary downstream NOS isoform in maintaining NO and reactive oxygen species balance in the failing heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.