Abstract

Whilst mitotic rat embryonic cardiomyoblast-derived H9c2 cells have been widely used as a model system to study the protective mechanisms associated with flavonoids, they are not fully differentiated cardiac cells. Hence, the aim of this study was to investigate the cardioprotective and cardiotoxic actions of quercetin and two of its major in vivo metabolites, quercetin 3-glucuronide and 3'-O-methyl quercetin, using differentiated H9c2 cells. The differentiated cardiomyocyte-like phenotype was confirmed by monitoring expression of cardiac troponin 1 after 7days of culture in reduced serum medium containing 10nM all-trans retinoic acid. Quercetin-induced cardiotoxicity was assessed by monitoring MTT reduction, lactate dehydrogenase (LDH) release, caspase 3 activity and reactive oxygen species production after prolonged flavonoid exposure (72hr). Cardiotoxicity was observed with quercetin and 3'-O-methyl quercetin, but not quercetin 3-glucuronide. Cardioprotection was assessed by pre-treating differentiated H9c2 cells with quercetin or its metabolites for 24hr prior to 2-hr exposure to 600μM H2 O2, after which oxidative stress-induced cell damage was assessed by measuring MTT reduction and LDH release. Cardioprotection was observed with quercetin and 3'-O-methyl quercetin, but not with quercetin 3-glucuronide. Quercetin attenuated H2 O2 -induced activation of ERK1/2, PKB, p38 MAPK and JNK, but inhibitors of these kinases did not modulate quercetin-induced protection or H2 O2 -induced cell death. In summary, quercetin triggers cardioprotection against oxidative stress-induced cell death and cardiotoxicity after prolonged exposure. Further studies are required to investigate the complex interplay between the numerous signalling pathways that are modulated by quercetin and which may contribute to the cardioprotective and cardiotoxic effects of this important flavonoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.