Abstract

Apomorphine is a potent antioxidant that infiltrates through biological membranes. We studied the effect of apomorphine (2 μM) on myocardial ischemic-reperfusion injury in the isolated rat heart. Since iron and copper ions (mediators in formation of oxygen-derived free radicals) are released during myocardial reperfusion, apomorphine interaction with iron and copper and its ability to prevent copper-induced ascorbate oxidation were studied. Apomorphine perfused before ischemia or at the commencement of reperfusion demonstrated enhanced restoration of hemodynamic function (i.e. recovery of the work index (LVDP × HR) was 69.2±4.0% with apomorphine pre-ischemic regimen vs. 43.4±9.01% in control hearts, p<0.01, and 76.3±8.0% with apomorphine reperfusion regimen vs. 30.4±11.1% in controls, p<0.001). This was accompanied by decreased release of proteins in the effluent and improved coronary flow recovery in hearts treated with apomorphine after the ischemia. Apomorphine forms stable complexes with copper and with iron, and inhibits the copper-induced ascorbate oxidation. It is suggested that these iron and copper chelating properties and the redox-inactive chelates formed by transition metals and apomorphine play an essential role in post-ischemic cardioprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.