Abstract

BackgroundFollowing myocardial infarction (MI), a series of structural and functional changes evolves in the myocardium, collectively defined as cardiac remodeling. PurposeThe aim of present study was to investigate the cardioprotection of salvianolicacid B (SalB) and ginsenoside Rg1 (Rg1) combination against cardiac remodeling in a rat model at the subacute phase of MI and further elucidate the underlying mechanism. MethodsRat heart was exposed via a left thoracotomy at the fourth intercostal space and MI was induced by a ligature below the left descending coronary artery. Hemodynamic assay was conducted using a Mikro-tipped SPR-320 catheter which was inserted through the right carotid artery into left ventricle.Myocardial infarct size was detected using 3,5-triphenyltetrazolium chloride (TTC) staining. Haematoxylin and eosin (HE) stain and picric sirius red stain were conducted for histopathological detection. Immunohistochemistry was used to detect the expression of α-smooth muscle actin (α-SMA) and gelatin zymography was used to evaluate the activities of matrix metalloproteinase-9 (MMP-9). ResultsComparing with MI rats, 30 mg/kg SalB-Rg1 improved cardiac function verified by maximum rate of pressure development for contraction (+dp/dtmax, p < 0.01) and maximum rate of pressure development for relaxation (−dp/dtmax, p < 0.05); reduced myocardial infarct size (p < 0.05) verified by TTC staining, improved cardiac structure based on HE stain; decreased collagen volume fraction (p < 0.05) and collagen I/III ratio (p < 0.05) according picrosirius red staining. The underlying mechanism of SalB-Rg1 against cardiac remodeling was associated with its down-regulation on α-SMA expression according immunohistochemistry (p < 0.01) and inhibition on MMP-9 activity based on in-gel zymography (p < 0.05). ConclusionAll above study indicated the potential therapeutic effects of SalB-Rg1 on heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.