Abstract

To increase the supply, many countries harvest allograft valves from explanted hearts of transplant recipients with ischaemic (ICM) or dilated cardiomyopathy (DCM). This study determines the structural integrity of valves from cardiomyopathic hearts. Extracellular matrix (ECM) was examined in human valves obtained from normal, ICM, and DCM hearts. To confirm if ECM changes were directly related to the cardiomyopathy, we developed a porcine model of chronic ICM. Histology and immunohistostaining, as well as non-invasive multiphoton and second harmonic generation (SHG) imaging revealed marked disruption of ECM structures in human valves from ICM and DCM hearts. The ECM was unaffected in valves from normal and acute ICM pigs, whereas chronic ICM specimens showed ECM alterations similar to those seen in ICM and DCM patients. Proteins and proteinases implicated in ECM remodelling, including Tenascin C, TGFbeta1, Cathepsin B, MMP2, were upregulated in human ICM and DCM, and porcine chronic ICM specimens. Valves from cardiomyopathic hearts showed significant ECM deterioration with a disrupted collagen and elastic fibre network. It will be important to determine the impact of this ECM damage on valve durability and calcification in vivo if allografts are to be used from these donors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call