Abstract

AbstractAdvances in our understanding of cardiomyocyte cell biology have been dependent largely upon the ability to generate primary cultures from enzymatically dispersed fetal, neonatal, or adult hearts. Primary cardiomyocyte cultures recapitulate many of the physiologic and molecular attributes found in intact hearts at the corresponding developmental stage. Moreover, these cultures are readily amenable to a wide variety of physical, physiologic, and molecular analyses. Gene transfer approaches including traditional calcium phosphate and lipofection techniques, as well as viral transduction with recombinant retro-, adeno-, or adeno-associated viruses are also readily accomplished. In light of these attributes, primary cardiomyocyte cultures constitute an extremely versatile experimental system.KeywordsEmbryonic StemEmbryonic Stem CellPeriodic Acid Schiff StainingUndifferentiated Embryonic Stem CellSpontaneous Contractile ActivityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.