Abstract

A disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme that mediates shedding of many membrane-bound molecules, thereby regulating multiple cellular responses. We investigated the role of cardiomyocyte ADAM17 in myocardial infarction (MI). Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/α-MHC-Cre; f/f/Cre) and parallel controls (ADAM17(flox/flox); f/f) were subjected to MI by ligation of the left anterior descending artery. Post MI, f/f/Cre mice showed compromised survival, higher rates of cardiac rupture, more severe left ventricular dilation, and suppressed ejection fraction compared with parallel f/f-MI mice. Ex vivo ischemic injury (isolated hearts) resulted in comparable recovery in both genotypes. Myocardial vascular density (fluorescent-labeled lectin perfusion and CD31 immunofluorescence staining) was significantly lower in the infarct areas of f/f/Cre-MI compared with f/f-MI mice. Activation of vascular endothelial growth factor receptor 2 (VEGFR2), its mRNA, and total protein levels were reduced in infarcted myocardium in ADAM17 knockdown mice. Transcriptional regulation of VEGFR2 by ADAM17 was confirmed in cocultured cardiomyocyte-fibroblast as ischemia-induced VEGFR2 expression was blocked by ADAM17-siRNA. Meanwhile, ADAM17-siRNA did not alter VEGFA bioavailability in the conditioned media. ADAM17 knockdown mice (f/f/Cre-MI) exhibited reduced nuclear factor-κB activation (DNA binding) in the infarcted myocardium, which could underlie the suppressed VEGFR2 expression in these hearts. Post MI, inflammatory response was not altered by ADAM17 downregulation. This study highlights the key role of cardiomyocyte ADAM17 in post-MI recovery by regulating VEGFR2 transcription and angiogenesis, thereby limiting left ventricular dilation and dysfunction. Therefore, ADAM17 upregulation, within the physiological range, could provide protective effects in ischemic cardiomyopathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.