Abstract

Cardiolipin (CL), a unique mitochondrial phospholipid synthesized by CL synthase (CLS), plays important, yet not fully understood, roles in mitochondria-dependent apoptosis. We manipulated CL levels in HeLa cells by knocking down CLS using RNA interference and selected a clone of CL-deficient cells with ~ 45% of its normal content. ESI–MS analysis showed that the CL molecular species were the same in CL-deficient and CL-sufficient cells. CL deficiency did not change mitochondrial functions (membrane potential, reactive oxygen species generation, cellular ATP levels) but conferred resistance to apoptosis induced by actinomycin D (ActD), rotenone, or γ-irradiation. During ActD-induced apoptosis, decreased CL peroxidation along with suppressed cytochrome (cyt) c release was observed in CL-deficient cells, whereas Bax translocation to mitochondria remained similar to that in CL-sufficient HeLa cells. The amounts of loosely bound cyt c (releasable under high ionic strength conditions) were the same in CL-deficient and CL-sufficient cells. Given that CL peroxidation during apoptosis is catalyzed by CL/cyt c complexes and CL oxidation products are essential for cyt c release from mitochondria, our results suggest that CL deficiency prevents adequate assembly of productive CL/cyt c complexes and CL peroxidation, resulting in increased resistance to apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call