Abstract

Periodicity, self-excitation, and time ratio asymmetry are the fundamental characteristics of the human gait. In order to imitate these mentioned characteristics, a pattern generator with four degrees of freedom is proposed based on cardioid oscillators developed by the authors. The proposed pattern generator is composed of four coupled cardioid oscillators, which are self-excited and have asymmetric time ratios. These oscillators are connected with other oscillators through coupled factors. The dynamic behaviors of the proposed oscillators, such as phase locking, time ratio, and self-excitation, are analyzed via simulations by employing the harmonic balance method. Moreover, for comparison, the simulated trajectories are compared with the natural joint trajectories measured in experiments. Simulation and experimental results show that the behaviors of the proposed pattern generator are similar to those of the natural lower limb. It means the simulated trajectories from the generator are self-excited without any additional inputs and have asymmetric time ratios. Their phases are locked with others. Moreover, the proposed pattern generator can be applied as the reference model for the lower limb exoskeleton controlling algorithm to produce self-adjusted reference trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call