Abstract

BackgroundThere are different genetic patterns for cardio-metabolic parameters among different populations. Additionally, it has been found that ancestral genetic components (the proportion of Amerindian, European and African) in admixed Latin American populations influence an individual’s susceptibility to cardio-metabolic disorders. The aim of this study was to evaluate the effect of ancestral genetic composition on a series of cardio-metabolic risk factors in a young admixed population from Colombia.ResultsIn a sample of 853 Colombian youth, 10 to 18 years old, the mean European contribution was 66.6 % (range: 41–82 %), the mean African contribution was 14 % (range: 4–48 %), and the mean Amerindian contribution was 19.4 % (range: 10–35 %) using a panel of 40 autosomal ancestry-informative markers (AIMs). We assessed the degree of association between ancestral African, Amerindian and European genetic components and measures of body mass index, waist circumference, fasting glucose, fasting insulin, insulin resistance, triglycerides, high-density lipoprotein, and systolic and diastolic blood pressure. Two of the nine measures assessed presented a nominal significant association with ancestral components after adjusting for confounding variables: triglyceride levels were associated with the Amerindian component (OR = 1.06, 98.3 % CI = 1.01–1.11, P = 0.002) and systolic blood pressure was associated with the European component (OR = 0.93, 98.3 % CI = 0.87 to 0.99, P = 0.008) and the African component (OR = 1.07, CI = 1.01–1.14 P = 0.008), although it was not significant following a global Bonferroni correction. Additionally, insulin levels and insulin resistance showed associations with the African component.ConclusionsOur findings support the idea that an Amerindian ancestral component may act as a risk factor for high triglyceride levels. In addition, an African ancestral component confers a risk for high systolic blood pressure, and a European ancestry serves as a protective factor for this condition in a young admixed population from Colombia. However, these results should be confirmed in a larger population.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0402-5) contains supplementary material, which is available to authorized users.

Highlights

  • There are different genetic patterns for cardio-metabolic parameters among different populations

  • The genetic admixture is a factor that influences the allelic frequencies in a population and this, in part, contribute to explaining the differences observed in the epidemiology of certain diseases in admixed population regarding parental populations

  • As for the perinatal and environmental variables, 86 % had an adequate birth weight and 9 % breastfed for less than a month; 29 % of the youth watch TV for >4 h per day; and 33 % engaged in low levels of physical activity

Read more

Summary

Introduction

There are different genetic patterns for cardio-metabolic parameters among different populations. The genetic admixture is a factor that influences the allelic frequencies in a population and this, in part, contribute to explaining the differences observed in the epidemiology of certain diseases in admixed population regarding parental populations These two conditions are fulfilled in the Colombian population because the diseases involved in cardiometabolic disorders, such as obesity, type 2 diabetes mellitus (T2D), hypertension and dyslipidemia, have different prevalences in European, African and Amerindian populations [9] and because the demographic history of the genetic admixture is very recent [5]. The prevalence of elevated total cholesterol is the highest in Europe (54 %) and the lowest in Africa (22.6 %) [9, 10] (See Additional file 1: Table S1) Because of this heterogeneity, genetic admixture studies provide a unique opportunity to account for the heterogeneity of population-based differences and to understand the role of genetic factors that contribute to disease risks in admixed populations. Based on the above information, we aimed to evaluate the association between individual and average estimates of genetic ancestry and the anthropometric, biochemical and clinical measurements used to assess cardiovascular risk factors in a Colombian population of admixed youth while adjusting for environmental factors

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call