Abstract

This paper studies a distributionally robust portfolio optimization model with a cardinality constraint for limiting the number of invested assets. We formulate this model as a mixed-integer semidefinite optimization (MISDO) problem by means of the moment-based ambiguity set of probability distributions of asset returns. To exactly solve large-scale problems, we propose a specialized cutting-plane algorithm that is based on bilevel optimization reformulation. We prove the finite convergence of the algorithm. We also apply a matrix completion technique to lower-level SDO problems to make their problem sizes much smaller. Numerical experiments demonstrate that our cutting-plane algorithm is significantly faster than the state-of-the-art MISDO solver SCIP-SDP. We also show that our portfolio optimization model can achieve good investment performance compared with the conventional robust optimization model based on the ellipsoidal uncertainty set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.