Abstract

Cardinality estimation of an approximate substring query is an important problem in database systems. Traditional approaches build a summary from the text data and estimate the cardinality using the summary with some statistical assumptions. Since deep learning models can learn underlying complex data patterns effectively, they have been successfully applied and shown to outperform traditional methods for cardinality estimations of queries in database systems. However, since they are not yet applied to approximate substring queries, we investigate a deep learning approach for cardinality estimation of such queries. Although the accuracy of deep learning models tends to improve as the train data size increases, producing a large train data is computationally expensive for cardinality estimation of approximate substring queries. Thus, we develop efficient train data generation algorithms by avoiding unnecessary computations and sharing common computations. We also propose a deep learning model as well as a novel learning method to quickly obtain an accurate deep learning-based estimator. Extensive experiments confirm the superiority of our data generation algorithms and deep learning model with the novel learning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.