Abstract

A new two-dimensional (2-D) optical code division multiple access (OCDMA) scheme to increase the achievable system capacity is proposed. The code exhibits good cross-correlation property time and wavelength shift. Performances are analyzed on code size and correlation properties affecting two important system parameters, bit error rate (BER) as a function of cardinality generated and optical power transmission requirement. The proposed system can effectively suppress phase-induced intensity noise (PIIN) and has multi-access interference (MAI) cancellation property. Results in a good agreement indicate that 2-D modified double weight (MDW) offers 163.7% and 336.2% larger cardinality compare to 2-D perfect difference code (PDC) and 2-D modified quadratic congruence (MQC) code. By increasing spatial code (N) and keeps similar code length system performance can be further optimized. 2-D MDW (M=45, N=18) accommodates 252.2% and 18.3% cardinality increment and low effective transmitted power (Psr) at −17.9dBm, compare to 2-D MDW (M=247, N=3) and (M=84, N=9) at 10−9 BER error floor. The architecture of the spectral/spatial MDW OCDMA system with property of MAI cancellation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.