Abstract
The constraints and the vast solution space of operational research optimization problems make them hard to cope with. However, Computational Intelligence, and especially Nature-Inspired Algorithms, has been a useful tool to tackle hard and large space optimization problems. In this paper, a very consistent and effective hybrid optimization scheme to tackle cardinality constrained portfolio optimization problems is presented. This scheme consists of two nature-inspired algorithms, i.e. Sonar Inspired Optimization algorithm and Genetic Algorithm. Also, the incorporation of heuristic information, i.e. an expert’s knowledge, etc., to the overall performance of the hybrid scheme is tested and compared to previous studies. More specifically, under the framework of a financial portfolio optimization problem, the heuristic information-enhanced hybrid scheme manages to reach a new optimal solution. Additionally, a comparison of the proposed hybrid scheme with other hybrid schemes applied to the same problem with the same data is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.