Abstract

An effective method based upon cardinal Hermite interpolant multiscaling functions is proposed for the solution of the one-dimensional parabolic partial differential equation with given initial condition and known boundary conditions and subject to overspecification at a point in the spatial domain. The properties of multiscaling functions are first presented. These properties together with a collocation method are then utilized to reduce the parabolic inverse problem to the solution of algebraic equations. The scheme described is efficient. The numerical results obtained using the present algorithms for test problems show that this method can solve the model effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.