Abstract

We shall describe Boolean extensions of models of set theory with the axiom of choice in which cardinals are collapsed by mappings definable from parameters in the ground model. In particular, starting from the constructible universe, we get Boolean extensions in which constructible cardinals are collapsed by ordinal definable sets.Let be a transitive model of set theory with the axiom of choice. Definability of sets in the generic extensions of is closely related to the automorphisms of the corresponding Boolean algebra. In particular, if G is an -generic ultrafilter on a rigid complete Boolean algebra C, then every set in [G] is definable from parameters in . Hence if B is a complete Boolean algebra containing a set of forcing conditions to collapse some cardinals in , it suffices to construct a rigid complete Boolean algebra C, in which B is completely embedded. If G is as above, then [G] satisfies “every set is -definable” and the inner model [G ∩ B] contains the collapsing mapping determined by B. To complete the result, it is necessary to give some conditions under which every cardinal from [G ∩ B] remains a cardinal in [G].The absolutness is granted for every cardinal at least as large as the saturation of C. To keep the upper cardinals absolute, it often suffices to construct C with the same saturation as B. It was shown in [6] that this is always possible, namely, that every Boolean algebra can be completely embedded in a rigid complete Boolean algebra with the same saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call