Abstract

Cardiac atrial arrhythmias are the most common type of heart rhythm disorders. Its genetic elucidation remains challenging with poor understanding of cellular and molecular processes. These arrhythmias usually affect elderly population but in rare cases, young children may also suffer from such electrical diseases. Severe complications, including stroke, are commonly age related. This study aims to identify a genetic link between electro-mechanic atrial dysfunction and stroke in children. In two unrelated boys of 11 and 14 years with both stroke and atrial arrhythmias, the clinical phenotype was determined through a complete physical examination, electrocardiogram (ECG), Holter ECG, and computed tomography. The genetic testing was performed on a large 95 genes panel implicated in myocardial electrical imbalance, using the next generation sequencing method. The panel also includes the genes usually associated with the development of cardiomyopathies. In one child, a left atrial dilation was observed. The 2nd boy suffered from atrial standstill. Both suffered from atrial bradycardia, flutter, and fibrillation. The complete genetic testing revealed the SCN5A c.3823G>A (p.D1275N) mutation in the first family, c.1141-2A>G and c.3157G>A (p.E1053K) mutations in the second family. Our results strengthen the association between Nav1.5 mutations and the occurrence of stroke in young patients. It emphasizes the need to look for atrial myopathy in the decision process for anticoagulation in young patients with atrial arrhythmic events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call