Abstract

We examined whether the three states model can explain the systolic and relaxation properties of cardiac muscle to clarify what factors affect these properties. Changing the values of the parameters describing the calcium transient and calcium sensitivity, we estimated the effects of these parameters on the systolic and relaxation properties of twitch contraction. The simulations showed the following four features: 1) An increase in the maximum calcium concentration and calcium sensitivity, and a prolongation of the calcium transient led to an increase in peak tension associated with an increase in the time to peak tension. 2) An increase in myosin ATPase activity led to an increase in peak tension associated with a decrease in the time to peak tension. 3) An increase of peak tension was accompanied by a prolongation of the late systolic period. 4) The constant of the late tension relaxation from 25% to 10% of the peak tension was altered when the crossbridge cycling rate, the resting calcium concentration or the late decline of the calcium transient was changed. The simulation were not contradictory to the experimental results and showed that three state muscle model can provide qualitative descriptions on the systolic and relaxation characteristics of cardiac muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.