Abstract

An appropriate extracranial biomarker that delineates endophenotypes of Parkinson's disease (PD) at an early stage and reflects the neurodegenerative process is lacking. An evaluation of myocardial sympathetic nerve terminals could be a good candidate. This study aimed to explore subtypes of PD patients that showed cardiac catecholaminergic vesicular defect and their characteristics. This study included 122 early drug-naïve PD patients who were followed for approximately 4-5years. All patients were examined with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane positron-emission tomography and 123I-meta-iodobenzylguanidine myocardial scintigraphy. Cardiac scans were reexamined two or three times. Patients were subgrouped into the sympathetic denervated group at the initial scan, those without evidence of denervated myocardium in the first and subsequent scans, and the converters whose myocardium was initially normal but became impaired in the subsequent scans. Cognition in 99 patients was initially assessed with neuropsychological tests. Any associations between cardiac denervation subtypes and presynaptic dopamine transporter densities were investigated. Cognitive status relevant to cardiac sympathetic denervation status was evaluated. This study found that cross-sectional comparisons of presynaptic monoamine transporter availability with a predefined order of cardiac denervation groups revealed parallel degeneration. A quadratic correlation between cardiac catecholamine capacity and cognition was observed. This association was interpreted to reflect the early neurobiology of PD. An observed cardiac catecholaminergic gradient was to mirror the central neurobiology of early PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call