Abstract

Diacylglycerol is a lipid second messenger that accumulates in cardiomyocytes when stimulated by Gqalpha protein-coupled receptor (GPCR) agonists such as angiotensin II, phenylephrine, and others. Diacylglycerol functions as a potent activator of protein kinase C (PKC) and is catalyzed by diacylglycerol kinase (DGK) to form phosphatidic acid and inactivated. However, the functional roles of DGK have not been previously examined in the heart. We hypothesized that DGK might prevent GPCR agonist-induced activation of diacylglycerol downstream signaling cascades and subsequent cardiac hypertrophy. To test this hypothesis, we generated transgenic (DGKzeta-TG) mice with cardiac-specific overexpression of DGKzeta. There were no differences in heart size and heart weight between DGKzeta-TG and wild-type littermate mice. The left ventricular function was normal in DGKzeta-TG mice. Continuous administration of subpressor doses of angiotensin II and phenylephrine caused PKC translocation, gene induction of atrial natriuretic factor, and subsequent cardiac hypertrophy in WT mice. However, in DGKzeta-TG mice, neither translocation of PKC nor upregulation of atrial natriuretic factor gene expression was observed after angiotensin II and phenylephrine infusion. Furthermore, in DGKzeta-TG mice, angiotensin II and phenylephrine failed to increase cross-sectional cardiomyocyte areas and heart to body weight ratios. Phenylephrine-induced increases in myocardial diacylglycerol levels were completely blocked in DGKzeta-TG mouse hearts, suggesting that DGKzeta regulated PKC activity by controlling cellular diacylglycerol levels. These results demonstrated the first evidence that DGKzeta negatively regulated the hypertrophic signaling cascade and resultant cardiac hypertrophy in response to GPCR agonists without detectable adverse effects in in vivo hearts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.