Abstract

BackgroundLethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction.MethodsWild type (WT) and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.)). Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination.ResultsLethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling), the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies.ConclusionsOur results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

Highlights

  • Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications

  • Founder mice were bred with mice of the same strain and transgenic offspring were routinely identified by a polymerase chain reaction (PCR) using a primer pair derived from the MHC promoter and rat catalase cDNA with the reverse sequence of AAT ATC GTG GGT GAC CTC AA and the forward sequence of CAG ATG AAG CAG TGG AAG GA

  • Cardiomyocytes from catalase transgenic mice displayed subtle but significant higher basal intracellular Ca2+ levels none of the other intracellular Ca2+ indices was altered by catalase overexpression

Read more

Summary

Introduction

Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. The underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. The combination of LF and the receptor binding PA yields the lethal toxin [10]. Anthrax lethal toxin was found to decrease the heart rate, left ventricular ejection fraction and mean arterial pressure [12,13]. Anthrax lethal toxin has been reported to directly compromise myocardial function [14,15,16,17]. The underlying mechanisms behind lethal toxin-induced unfavorable cardiac effects remain elusive

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call