Abstract

In order to study the effects of peptides on intrinsic cardiac neurons, substance P, bradykinin, oxytocin, calcitonin gene related peptide, atrial natriuretic peptide and vasoactive intestinal peptide were administered into canine atrial or ventricular ganglionated plexi. When substance P was injected into right atrial or cranial medial ventricular ganglionated plexi heart rate, atrial force and ventricular intramyocardial pressures were augmented. No cardiac changes occurred when similar volumes of saline (i.e., peptide vehicle) were injected into these ganglionated plexi. When bradykinin was injected into atrial or ventricular ganglionated plexi heart rate, atrial force and ventricular force were augmented in ∼50% and depressor responses were elicited in ∼50% of these animals. When oxytocin was injected into right atrial ventral ganglionated plexi heart rate and atrial forces were reduced in five of ten dogs studied. No cardiac changes occurred when oxytocin was injected into left atrial or ventricular ganglionated plexi. No responses were elicited when calcitonin gene related peptide, atrial natriuretic peptide or vasoactive intestinal peptide was administered into atrial or ventricular ganglionated plexi. Following acute decentralization of the heart, no significant responses were elicited by repeat administrations of substance P, bradykinin or oxytocin, implying that connectivity with central nervous system neurons was necessary for consistent responses to be elicited. It is concluded that substance P, bradykinin and oxytocin can affect neurons on the heart such that cardiodynamics are modified, these different peptides eliciting different cardiac responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call